Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0346623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095465

RESUMO

IMPORTANCE: This manuscript explores the host humoral response to selected antigens of the syphilis agent during infection to evaluate their potential use as diagnostic tests and markers for treatment.


Assuntos
Sífilis , Humanos , Sífilis/diagnóstico , Sífilis/tratamento farmacológico , Treponema pallidum , Antígenos de Bactérias , Biomarcadores , Anticorpos Antibacterianos
2.
Sex Transm Dis ; 50(8): 550-552, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165832

RESUMO

ABSTRACT: A patient with unilateral cervical lymphadenopathy suspicious for malignancy underwent a fine needle aspiration. Histology demonstrated mixed inflammatory infiltrates with abundant spirochetes. Sufficient spirochete DNA was extracted from paraffin-embedded tissue sections to obtain the near-complete genome sequence of a macrolide-resistant strain belonging to the SS14 omega strain of Treponema pallidum .


Assuntos
Linfonodos , Treponema pallidum , Humanos , Treponema pallidum/genética , Biópsia por Agulha Fina , Inclusão em Parafina , Formaldeído
3.
PLoS Pathog ; 19(3): e1011259, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940224

RESUMO

BACKGROUND: The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum (T. pallidum), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted ß-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. PRINCIPAL FINDINGS: A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DCKO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DCKO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DCKO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DCKO strain remained uninfected. CONCLUSION: These data further support the critical role of TprK in T. pallidum virulence and persistence during infection.


Assuntos
Sífilis , Animais , Coelhos , Treponema pallidum , Treponema , Variação Antigênica/genética , Anticorpos
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711914

RESUMO

Background: The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum ( T. pallidum ), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum 's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted ß-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. Principal findings: A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DC KO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DC KO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DC KO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DC KO strain remained uninfected. Conclusion: These data further support the critical role of TprK in T. pallidum virulence and persistence during infection. Author Summary: Syphilis is still endemic in low- and middle-income countries, and it has been resurgent in high-income nations, including the U.S., for years. In endemic areas, there is still significant morbidity and mortality associated with this disease, particularly when its causative agent, the spirochete Treponema pallidum subsp . pallidum ( T. pallidum ) infects the fetus during pregnancy. Improving our understanding of syphilis pathogenesis and T. pallidum biology could help investigators devise better control strategies for this serious infection. Now that tools to genetically manipulate this pathogen are available, we can engineer T. pallidum strains lacking specific genes or genomic regions known (or believed) to be associated with virulence. This approach can shed light on the role of the ablated genes or sequences in disease development using loss-of-function strains. Here, we derived a knockout (KO) T. pallidum mutant (SS14-DC KO ) impaired in its ability to undergo antigenic variation of TprK, a protein that has long been hypothesized to be central in evasion of the host immune response and pathogen persistence during infection. When compared to the WT isolate, which is still capable of antigenic variation, the SS14-DC KO strain is significantly attenuated in its ability to proliferate and to induce early disease manifestations in infected rabbits. Our results further support the importance of TprK antigenic variation in syphilis pathogenesis and pathogen persistence.

5.
Front Microbiol ; 13: 1007056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204625

RESUMO

Sequencing of most Treponema pallidum genomes excludes repeat regions in tp0470 and the tp0433 gene, encoding the acidic repeat protein (arp). As a first step to understanding the evolution and function of these genes and the proteins they encode, we developed a protocol to nanopore sequence tp0470 and arp genes from 212 clinical samples collected from ten countries on six continents. Both tp0470 and arp repeat structures recapitulate the whole genome phylogeny, with subclade-specific patterns emerging. The number of tp0470 repeats is on average appears to be higher in Nichols-like clade strains than in SS14-like clade strains. Consistent with previous studies, we found that 14-repeat arp sequences predominate across both major clades, but the combination and order of repeat type varies among subclades, with many arp sequence variants limited to a single subclade. Although strains that were closely related by whole genome sequencing frequently had the same arp repeat length, this was not always the case. Structural modeling of TP0470 suggested that the eight residue repeats form an extended α-helix, predicted to be periplasmic. Modeling of the ARP revealed a C-terminal sporulation-related repeat (SPOR) domain, predicted to bind denuded peptidoglycan, with repeat regions possibly incorporated into a highly charged ß-sheet. Outside of the repeats, all TP0470 and ARP amino acid sequences were identical. Together, our data, along with functional considerations, suggests that both TP0470 and ARP proteins may be involved in T. pallidum cell envelope remodeling and homeostasis, with their highly plastic repeat regions playing as-yet-undetermined roles.

6.
Curr Protoc ; 2(8): e507, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35976045

RESUMO

Although the isolation of Treponema pallidum subsp. pallidum (T. pallidum) from a syphilis patient dates to 1912, for the duration of the 20th century, this pathogen has remained an exceedingly difficult organism to study due to the lack of a system to support its viability in vitro. This limitation, in turn, has precluded the application of genetic engineering techniques via transformation and subsequent selection of T. pallidum transformants. A recently described method for in vitro cultivation of T. pallidum, however, has made it possible for us to experiment with transformation and selection methods. Here we describe the approach that we adopted to successfully transform T. pallidum with foreign DNA and select the resulting recombinant strain using kanamycin. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Transformation of T. pallidum Support Protocol 1: Quantification of T. pallidum in suspensions using dark-field microscopy Support Protocol 2: Counting cells using a hemacytometer Basic Protocol 2: Selection, initial passaging, and expansion of transformed cultures Basic Protocol 3: Isolation of a clonal strain through limiting dilution.


Assuntos
Sífilis , Treponema pallidum , Humanos , Treponema/genética , Treponema pallidum/genética
7.
PLoS Negl Trop Dis ; 15(12): e0010063, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936652

RESUMO

In spite of its immutable susceptibility to penicillin, Treponema pallidum (T. pallidum) subsp. pallidum continues to cause millions of cases of syphilis each year worldwide, resulting in significant morbidity and mortality and underscoring the urgency of developing an effective vaccine to curtail the spread of the infection. Several technical challenges, including absence of an in vitro culture system until very recently, have hampered efforts to catalog the diversity of strains collected worldwide. Here, we provide near-complete genomes from 196 T. pallidum strains-including 191 T. pallidum subsp. pallidum-sequenced directly from patient samples collected from 8 countries and 6 continents. Maximum likelihood phylogeny revealed that samples from most sites were predominantly SS14 clade. However, 99% (84/85) of the samples from Madagascar formed two of the five distinct Nichols subclades. Although recombination was uncommon in the evolution of modern circulating strains, we found multiple putative recombination events between T. pallidum subsp. pallidum and subsp. endemicum, shaping the genomes of several subclades. Temporal analysis dated the most recent common ancestor of Nichols and SS14 clades to 1717 (95% HPD: 1543-1869), in agreement with other recent studies. Rates of SNP accumulation varied significantly among subclades, particularly among different Nichols subclades, and was associated in the Nichols A subclade with a C394F substitution in TP0380, a ERCC3-like DNA repair helicase. Our data highlight the role played by variation in genes encoding putative surface-exposed outer membrane proteins in defining separate lineages, and provide a critical resource for the design of broadly protective syphilis vaccines targeting surface antigens.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Genoma Bacteriano , Sífilis/microbiologia , Treponema pallidum/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Sequência de Bases , Feminino , Variação Genética , Humanos , Madagáscar , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Sífilis/imunologia , Treponema pallidum/classificação , Treponema pallidum/imunologia , Treponema pallidum/isolamento & purificação
8.
PLoS Pathog ; 17(7): e1009612, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228757

RESUMO

Despite more than a century of research, genetic manipulation of Treponema pallidum subsp. pallidum (T. pallidum), the causative agent of syphilis, has not been successful. The lack of genetic engineering tools has severely limited understanding of the mechanisms behind T. pallidum success as a pathogen. A recently described method for in vitro cultivation of T. pallidum, however, has made it possible to experiment with transformation and selection protocols in this pathogen. Here, we describe an approach that successfully replaced the tprA (tp0009) pseudogene in the SS14 T. pallidum strain with a kanamycin resistance (kanR) cassette. A suicide vector was constructed using the pUC57 plasmid backbone. In the vector, the kanR gene was cloned downstream of the tp0574 gene promoter. The tp0574prom-kanR cassette was then placed between two 1-kbp homology arms identical to the sequences upstream and downstream of the tprA pseudogene. To induce homologous recombination and integration of the kanR cassette into the T. pallidum chromosome, in vitro-cultured SS14 strain spirochetes were exposed to the engineered vector in a CaCl2-based transformation buffer and let recover for 24 hours before adding kanamycin-containing selective media. Integration of the kanR cassette was demonstrated by qualitative PCR, droplet digital PCR (ddPCR), and whole-genome sequencing (WGS) of transformed treponemes propagated in vitro and/or in vivo. ddPCR analysis of RNA and mass spectrometry confirmed expression of the kanR message and protein in treponemes propagated in vitro. Moreover, tprA knockout (tprAko-SS14) treponemes grew in kanamycin concentrations that were 64 times higher than the MIC for the wild-type SS14 (wt-SS14) strain and in infected rabbits treated with kanamycin. We demonstrated that genetic manipulation of T. pallidum is attainable. This discovery will allow the application of functional genetics techniques to study syphilis pathogenesis and improve syphilis vaccine development.


Assuntos
Engenharia Genética/métodos , Treponema/genética , Animais , Masculino , Coelhos , Spirochaetales/genética
9.
EBioMedicine ; 65: 103281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721817

RESUMO

BACKGROUND: Penicillin G, the current standard treatment for syphilis, has important drawbacks, but virtually no preclinical or clinical studies have been performed to identify viable alternatives. We tested, both in vitro and in vivo, three marketed antibiotics with adequate pharmacological properties to treat syphilis. METHODS: We used an in vitro culturing system of T. pallidum to perform drug susceptibility testing and applied quantitative PCR targeting the tp0574 gene to measure bacterial growth. To confirm in vivo efficacy, fifteen rabbits were infected intradermally with T. pallidum at eight sites each and randomly allocated to an experimental treatment (linezolid, moxifloxacin, clofazimine) or a control arm (benzathine penicillin G [BPG], untreated). The primary outcome was treatment efficacy defined as the time to lesion healing measured from the date of treatment start. Secondary outcomes were absence of treponemes or treponemal mRNA in injection sites, absence of seroconversion, and cerebrospinal fluid (CSF) abnormalities and negative rabbit infectivity tests (RIT). FINDINGS: Linezolid showed in vitro bactericidal activity at concentrations of 0.5 µg/mL or higher. When administered orally to experimentally infected rabbits, it induced healing of early lesions at a time similar to BPG (hazard ratio 3.84; 95% CI 2.05-7.17; p < 0.0001 compared to untreated controls). In linezolid-treated animals, dark-field microscopy and qPCR assessment showed no presence of treponemes after day 3 post-treatment start, serologic test did not convert to positive, CSF had no abnormalities, and RIT was negative. Moxifloxacin and clofazimine failed to inhibit bacterial growth in vitro and could not cure the infection in the rabbit model. INTERPRETATION: Linezolid, a low-cost oxazolidinone, has in vitro and in vivo activity against T. pallidum, with efficacy similar to BPG in treating treponemal lesions in the animal model. Our findings warrant further research to assess the efficacy of linezolid as an alternative to penicillin G to treat syphilis in human clinical trials. FUNDING: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 850450).


Assuntos
Linezolida/farmacologia , Treponema pallidum/efeitos dos fármacos , Animais , Área Sob a Curva , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Linezolida/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Moxifloxacina/uso terapêutico , Penicilina G Benzatina/farmacologia , Penicilina G Benzatina/uso terapêutico , Curva ROC , Coelhos , Sífilis/tratamento farmacológico , Sífilis/patologia
10.
PLoS Negl Trop Dis ; 15(1): e0008812, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497377

RESUMO

BACKGROUND: An effective syphilis vaccine should elicit antibodies to Treponema pallidum subsp. pallidum (T. p. pallidum) surface antigens to induce pathogen clearance through opsonophagocytosis. Although the combination of bioinformatics, structural, and functional analyses of T. p. pallidum genes to identify putative outer membrane proteins (OMPs) resulted in a list of potential vaccine candidates, still very little is known about whether and how transcription of these genes is regulated during infection. This knowledge gap is a limitation to vaccine design, as immunity generated to an antigen that can be down-regulated or even silenced at the transcriptional level without affecting virulence would not induce clearance of the pathogen, hence allowing disease progression. PRINCIPAL FINDINGS: We report here that tp1031, the T. p. pallidum gene encoding the putative OMP and vaccine candidate TprL is differentially expressed in several T. p. pallidum strains, suggesting transcriptional regulation. Experimental identification of the tprL transcriptional start site revealed that a homopolymeric G sequence of varying length resides within the tprL promoter and that its length affects promoter activity compatible with phase variation. Conversely, in the closely related pathogen T. p. subsp. pertenue, the agent of yaws, where a naturally-occurring deletion has eliminated the tprL promoter region, elements necessary for protein synthesis, and part of the gene ORF, tprL transcription level are negligible compared to T. p. pallidum strains. Accordingly, the humoral response to TprL is absent in yaws-infected laboratory animals and patients compared to syphilis-infected subjects. CONCLUSION: The ability of T. p. pallidum to stochastically vary tprL expression should be considered in any vaccine development effort that includes this antigen. The role of phase variation in contributing to T. p. pallidum antigenic diversity should be further studied.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Treponema pallidum/genética , Treponema pallidum/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Humanos , Masculino , Coelhos , Proteínas Recombinantes , Sífilis/prevenção & controle , Treponema , Bouba/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA